
Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, Luke Zettlemoyer


Information Bottleneck for Controlling 
Conciseness in Rationale Extraction

EMNLP 2020

Code https://github.com/bhargaviparanjape/explainable_qa

Webpage https://bhargaviparanjape.github.io/

1

https://github.com/bhargaviparanjape/explainable_qa
https://bhargaviparanjape.github.io/


• Complex SOTA models for Text Classification, 
Question Answering, Fact Verification, etc. are 
black boxes

Motivation 

Context:  
Beware of movies with the director's name in the title. 
Take John Carpenter's ghosts of mars ( please ) … this 
embarrassment would surely have bypassed theaters 
entirely and gone straight to its proper home on the USA 
network … the latest from the director of Starman, 
Halloween, and Escape from New York is a lousy western 
all gussied up to look like a futuristic horror flick. For 
future generations. A matriarchal society … Well, don't 
get your hopes up. 
Label: Negative

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is used mainly 
for canning and manufacturing pickles ... It can be used in 
place of table salt, although it can cake. A solution to this 
would be to add a few grains of rice to the salt …. 
Label: Yes

Text Classification

Question Answering
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• Complex SOTA models are black boxes 


• Tasks: Text Classification, Question 
Answering, Fact Verification  


• Humans highlight <25% of input as evidence 
to explain their decision

Rationales 
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• Complex SOTA models are black boxes 


• Tasks: Text Classification, Question 
Answering, Fact Verification  


• Humans highlight <25% of input as evidence 
to explain their decision


• Rationale: A subsequence of input text that is 
necessary and sufficient for task decision


Sufficient - Concise


Necessary - Faithful

Rationales 
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PICKLING SALT Pickling salt is a salt that is used mainly 
for canning and manufacturing pickles ... It can be used in 
place of table salt, although it can cake. A solution to this 
would be to add a few grains of rice to the salt …. 
Label: Yes

Text Classification

Question Answering
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• The rationale must actually be used for the model’s prediction.

Faithfulness

Model

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is used 
mainly for canning and manufacturing pickles …. It 
can be used in place of table salt, although it can 
cake. A solution to this would be to add a few 
grains of rice to the salt , or to bake it, and then 
break it apart

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is used 
mainly for canning and manufacturing pickles …. It 
can be used in place of table salt , although it can 
cake . A solution to this would be to add a few 
grains of rice to the salt , or to bake it, and then 
break it apart

True
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Extract subsequence of text that is necessary 
and sufficient for task decision


Sufficient (Conciseness) 


Necessary (Faithfulness)


Outline 

• Information Bottleneck Approach

• Model Architecture 

• Experiments 

• Results

Problem Definition 
Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is used mainly 
for canning and manufacturing pickles ... It can be used in 
place of table salt, although it can cake. A solution to this 
would be to add a few grains of rice to the salt …. 
Label: Yes

Question Answering
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• The rationale must be necessary for the model’s prediction


• Faithful model design[1] : 


Explainer identifies rationale 

Predictor conditions only on explainer’s prediction

Faithfulness

Explainer Predictor

Information Bottleneck 
Model Architecture 

Experiments 

Results

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would 
be to add a few grains of rice to the salt, or to 
bake it, and then break it apart

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would be 
to add a few grains of rice to the salt, or to bake 
it, and then break it apart

Supervision

False

True
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• Explainer can makes mistakes, leading to performance loss of predictor


• Tradeoff between predictor’s accuracy and rationale conciseness

Accuracy-Conciseness Tradeoff
Information Bottleneck 
Model Architecture 

Experiments 

Results

Explainer Predictor

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would be 
to add a few grains of rice to the salt, or to bake 
it, and then break it apart

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would be 
to add a few grains of rice to the salt, or to bake 
it, and then break it apart

False
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• Explainer can makes mistakes, leading to performance loss of predictor. 


• Rationale must be optimally compressed representation of input: 


1. Conciseness: Minimally informative about the original input, and 

2. Accuracy: Maximally informative about the output label.

Accuracy-Conciseness Tradeoff
Information Bottleneck 
Model Architecture 

Experiments 

Results

Explainer Predictor

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would 
be to add a few grains of rice to the salt, or to 
bake it, and then break it apart

Query: Can pickling salt be used as table salt? 
Context: 
PICKLING SALT Pickling salt is a salt that is 
used mainly for canning and manufacturing 
pickles …. It can be used in place of table salt , 
although it can cake. A solution to this would be 
to add a few grains of rice to the salt, or to bake 
it, and then break it apart

True
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Information Bottleneck: Find best tradeoff between accuracy and compression (conciseness) 

Setup: A random variable X that is predictive of observed variable Y 

IB Objective: Find a compressed representation of X termed bottleneck variable Z that can best 
predict Y. 

Information Bottleneck (IB) Principle  
Information Bottleneck 
Model Architecture 

Experiments 

Results
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If X is predictive of Y, IB finds a compressed representation termed bottleneck variable Z that best predicts 
Y. 

Objective: Z should be minimally informative about X and maximally informative about Y.
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Compression (Conciseness) term

Information Bottleneck Principle  

I(; ) is mutual information

Information Bottleneck 
Model Architecture 

Experiments 

Results



If X is predictive of Y, IB finds a compressed representation termed bottleneck variable Z that best predicts 
Y. 

Objective: Z should be minimally informative about X and maximally informative about Y.

12

Compression (Conciseness) term.     Relevance (Accuracy) term  

Information Bottleneck Principle  

I(; ) is mutual information

Information Bottleneck 
Model Architecture 

Experiments 

Results



If X is predictive of Y, IB aims to find a compressed representation termed bottleneck variable Z of that 
best predicts Y. 

Objective: Z should be minimally informative about X and maximally informative about Y.
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 Tradeoff parameter β

Information Bottleneck Principle  

I(; ) is mutual information

Compression (Conciseness) term.     Relevance (Accuracy) term  

Information Bottleneck 
Model Architecture 

Experiments 

Results



• Variational lower bound on mutual information for gradient-based optimization[2]

Variational Information Bottleneck 
Information Bottleneck 
Model Architecture 

Experiments 

Results
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• Variational lower bound on mutual information for gradient-based optimization[2]


• Objective to minimize:


Task Loss: Likelihood of predicting y from z

Variational Information Bottleneck 

Relevance (Accuracy) term                 

Information Bottleneck 
Model Architecture 

Experiments 

Results
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• Variational lower bound on mutual information for parametric optimization[2]


• Objective to minimize:


Task Loss: Likelihood of predicting y from z


Information Loss: Divergence between posterior p(z|x) and a prior r(z) that 
contains no information about x.

Variational Information Bottleneck 
Information Bottleneck 
Model Architecture 

Experiments 

Results

Relevance (Accuracy) term                    Compression (Conciseness) term
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• Shortcoming of the previous formulation: Bottleneck representation z is not interpretable as the 
rationale! 


• Our formulation: X is a sequence of words or sentences and Z is constrained to be human 
readable subsequence in X

Variational IB for Interpretability 
Information Bottleneck 
Model Architecture 

Experiments 

Results

X

Z
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Masked version of the input



Variational IB for Interpretability 
Information Bottleneck 
Model Architecture 

Experiments 

Results

x

Z

• Interpretable Information Bottleneck Formulation: 


Input x is a sequence of words/sentences 

Binary mask vector m of same size as x

Bottleneck z is obtained by masking x with a binary vector m

m 18



• Interpretable Information Bottleneck Formulation: 


Input x is a sequence of words/sentences 

Binary mask vector m of same size as x

Bottleneck z is obtained by masking x with a binary vector m

Variational IB for Interpretability 
Information Bottleneck 
Model Architecture 

Experiments 

Results

Relevance (Accuracy) term                            Compression (Conciseness) term
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Apply knowledge of how sparse the mask should be to assign the prior over mask, r(m) a fixed value  π

Our Approach: Sparse IB 

Table : % of input masked as rationale 
by humans can be used as π

Information Bottleneck 
Model Architecture 

Experiments 

Results
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z = x ° m

y
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• Two independent transformer-based explainer and predictor models 

Model Architecture
Information Bottleneck

Model Architecture 
Experiments 

Results
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• Input consists of a sequence of sentences  


• Explainer predicts posterior probability  that  sentence is in rationale.

x1, x2, . . xi, . . , xn

p(mi |x) ith

Model Architecture - Explainer
Information Bottleneck

Model Architecture 
Experiments 

Results
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• Bernoulli distribution with  used to sample binary mask value 


• Gumbel softmax trick to reparameterize  for end-to-end differentiability

p(mi |x) mi

mi

Information Bottleneck

Model Architecture 
Experiments 

ResultsModel Architecture - Sampling
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• Predictor/Classifier applies the sampled sentence mask over its input representation 
while predicting task label

x1
x2
x3
x4
x5
x6

0.6
0.1
0.4

x

m ~ p(m|x) 

z = x ° m

y
Label
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0.1
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0.1

Information Bottleneck

Model Architecture 
Experiments 

ResultsModel Architecture - Predictor
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Five text classification tasks from the ERASER benchmark (DeYoung et al., 2019) : 


• Movies sentiment analysis


• FEVER fact verification


• MultiRC and BoolQ reading comprehension datasets


• Evidence inference over scientific text. 


All these datasets have sentence-level rationale annotations for validation and test sets.

Experiments
Information Bottleneck

Model Architecture

Experiments  
Results
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• Five text classification tasks from the ERASER benchmark (DeYoung et al., 2019). All these 
datasets have sentence-level rationale annotations for validation and test sets.

Experiments

• Task Performance: Macro F1 for classification tasks


• Rationale Performance: Token-level macro F1 of predicted rationale to gold annotations  

Evaluation Metrics 

Information Bottleneck

Model Architecture

Experiments  
Results
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• Previous work[1] minimize norm of the mask vector for conciseness. 


• Value of norm is no smaller than the value of the prior π

Baseline Approaches - Sparse Norm 
Information Bottleneck

Model Architecture

Experiments  
Results

Same as the fixed prior used in information loss!
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• Baseline that does not use the information loss term for optimization

Baseline Approaches - No Conciseness Loss
Information Bottleneck

Model Architecture

Experiments  
Results
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Results - Task Performance
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Information Bottleneck

Model Architecture

Experiments 

Results
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Results - Task Performance
Information Bottleneck

Model Architecture

Experiments 

Results

30



Sparse IB (Ours)


• Achieves desired prior sparsity in 
expectation

Discussion: Controlled Sparsity
Information Bottleneck

Model Architecture

Experiments 

Results
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Sparse IB (Ours)


• Achieves desired prior sparsity in 
expectation


• Is able to adapt to different 
examples

Discussion: Controlled Sparsity
Information Bottleneck

Model Architecture

Experiments 

Results
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Information Bottleneck

Model Architecture

Experiments 

ResultsResults - Task Performance
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• Use limited rationale supervision to close gap with a model that uses full input


• Replacing information loss term with cross-entropy term between predicted mask 
and human-annotated gold mask

Results - Semisupervised
Information Bottleneck

Model Architecture

Experiments 

Results
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Results - Semisupervised
Task accuracy gap can be bridged with <50% annotations for rationales with 
diminishing returns as more annotated data is used 

Information Bottleneck

Model Architecture

Experiments 

Results

Task Performance vs. % of Rationale Annotations 
FEVER (left), MultiRC (right)
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• Faithful and interpretable model using information bottleneck that jointly 
optimizes for conciseness of rationale and accuracy of task.


• Improvement in task and rationale performance over prior work


• Nears performance of full-input model with <50% annotation for rationales

Conclusion 
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Thank you!
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